
OpenStep Journal, Spring 1995 (Volume 1, Issue 1).
Copyright ã1995 by NeXT Computer, Inc. All Rights Reserved.
 BOOTSTRAP PROBLEM

The Village Smythy
Written by      Alan M. Marcum

Under the spreading chestnut-tree,
The village smithy stands¼
ÐHenry Wadsworth Longfellow

THE BIG PICTURE
When you start a UNIX-based computer, lots of ªstuffº has to be done. The kernel
has to be found and loaded, kernel structures allocated, some drivers loaded,
devices located and initialized, and file systems mounted. Then you're ready to
run ªsingle-user,º a mode in which normal system and network services aren't
available, the NEXTSTEP Window Server hasn't been started, and you must use
an ancient, line-oriented terminal interface.
What happens during the low-level portions of network startup under NEXTSTEP? How does automatic
address configuration work? Why does automatic host name configuration sometimes not work? What
happens on the network during startup? And what exactly is a configuration server? In each issue, this
column explores such details of network startup.

But if you really want to use the computer, yet more work has to be done. More
drivers must be loaded, the network interface configured, various system
servicesÐfrom a ªdirectory assistanceº service to network management to data
cachesÐrun, more file systems mounted, and yet more system services run. And
then, finally, for a machine running NEXTSTEP, a login window appears. (For
other OpenStep-compatible systems, you first somehow log in and then start
OpenStep.)
That's the big-picture view of startup. And it's good enough for many people. But,
for those who want more details, let's get out the magnifying glasses and the
microscopes. We'll focus on what it takes to get the networking portions of the
system up and running, from the time the network interface is configured (rc.net
and ifconfig) until the time that network administrative information is available
to user-level processes (through lookupd).
In this column, we'll cover the configuration of the network interface, including
the Internet address, network mask, and broadcast address, and the
determination of a host name. Future columns will examine the rest of the
process.
These steps are specific to NEXTSTEP Release 3.3. Startup for non-NeXT OpenStep implementations may
be very different, and startup of other NEXTSTEP releases may be slightly different.

THE STEPS
Let's first examine the steps we'll follow, as specified in /etc/rc. If we wade

through the comments and the conditional statements, the first three things of
relevance done in /etc/rc are these:
/usr/etc/nmserver -nonet
/usr/etc/driverLoader a
sh /etc/rc.net -h

KYBBLES AND BYTS

Here's the key to the abbreviations used in this article:

· ARPÐaddress resolution protocol · IPCÐinterprocess communication
· DLCÐdata link control · NISÐnetwork information system
· DNSÐdomain name system · TCPÐtransmission control protocol
· ICMPÐInternet control message protocol · UDPÐuser datagram protocol
· IPÐInternet protocol

For additional background information on Internet addresses or the Internet protocols discussed here, see
the entries for Comer, Majka, and Stevens in the references at the end of this article.

Note that driverLoader is run only on Driver Kit±based systems; NEXTSTEP on
Motorola 680x0-based NeXT computers does not use Driver Kit.
First, nmserver, the Mach network server, is started. The nmserver
encapsulates Mach IPC for transmission over the network within an IP packet,
using either UDP or TCP. It also provides a simple service for registering names of
available services; this registry can be queried by processes on the same
computer and other computers on the network.

When invoked with -nonet, nmserver doesn't attempt to configure the network
interface. It allows its services to be available for loading drivers, for example,
but it does not assume there's a network interface. (The network portion will be
initialized later in the startup sequence.)
Next, all device drivers specified in the configuration table are loaded and
configured if the system uses Driver Kit.
Now, we're ready to turn on the network, using /etc/rc.net. (For the rest of this
column, you might want a copy of /etc/rc.net handy.)

rc.net
The rc.net shell script is invoked with -h to set the host name; without -h, the
host name won't be set. When rc.net runs, it looks for /etc/iftab, the network
interface table. If it's not there, rc.net uses the information in /etc/hostconfig.
In addition, the default iftab just uses hostconfig. Let's assume for now that the
default iftab is being used:
-1- inet -HOSTCONFIG-
* inet -AUTOMATIC-netmask -AUTOMATIC- -trailers up

Incidentally, the -d flag can be used to debug rc.net: It causes commands to be printed instead
of executed.

There are extensive comments in /etc/iftab describing the features available.
For example, an arbitrary command can be run when an interface is to be

configured, rather than just running ifconfig. (More on this in a future column
perhaps.)
The iftab shown above specifies that hostconfig should be used to configure
the primary network interface (the line beginning -1-) and to configure any other
interfaces using automatic address and automatic network mask configuration
(the line beginning *).
Since only one network interface is supported under NEXTSTEP, we'll assume
that there's only one network interface configured.
rc.net is written with a fair number of internal subroutine functions. The
hostconfig() function, for example, parses /etc/hostconfig, setting various
local variables for later use in actually configuring the network. There are three
relevant parameters in /etc/hostconfig for configuring the interface:
INETADDR, IPNETMASK, and IPBROADCAST. These correspond to the
ªInternet Address,º ªNetmask,º and ªBroadcast Addressº fields in HostManager,
respectively. If values other than -AUTOMATIC- are specified (ªAutoconfigure,º
ªAutomatic,º and ªDefault,º respectively, in HostManager), then those specific
values will be used for the Internet address, the network mask, and the local
broadcast address. Otherwise, automatic determination of these will be done.
Following is a sample of /etc/hostconfig:
HOSTNAME=-AUTOMATIC-
INETADDR=-AUTOMATIC-
ROUTER=-ROUTED-
IPNETMASK=-AUTOMATIC-

IPBROADCAST=-AUTOMATIC-
NETMASTER=-NO-
YPDOMAIN=-NO-
TIME=-AUTOMATIC-

Normally, except for machines providing networkwide NetInfo services or
configuration services, all three of these parameters should be set to -
AUTOMATIC-; the rest of this discussion assumes this, since soldering in explicit
values, while often appropriate, is pretty straightforwardÐand doesn't do
anything interesting on the network! Similarly for automatic host name
configuration: Let's assume that HOSTNAME is set to -AUTOMATIC- for this
discussion (in HostManager, this will be the ªHostnameº parameter's
ªAutoconfigureº choice) and see what happens out on the network.
The commands that will be run for fully automatic configuration of an Ethernet
interface
are these:
ifconfig en0 inet -AUTOMATIC- netmask -AUTOMATIC- -trailers up
hostname -AUTOMATIC-

By default, the broadcast address is automatically determined, so no broadcast
clause is needed.
Let's see what each portion of these commands does.

Simple things first
Let's take care of the last two arguments on the ifconfig command line: -

trailers and up. The -trailers argument disables trailer link-level encapsulation.
(See the entries for Comer, Leffler,
and Stevens in the references section at the end of this article and Internet RFC
893 for
information on trailer encapsulation.) Trailer encapsulation has been deprecated;
NEXTSTEP does not use it.
The up argument simply configures the interface as up, which means ªactive,º as
opposed
to down.

Automatic address configuration
The first thing to occur in the interface configuration is automatic determination
of the interface address, the processing of inet -AUTOMATIC-. This causes a
BOOTP request to be sent to the network. The request takes the form of a UDP-
based broadcast (from UDP port 68 to UDP port 67), specifying the interface's
hardware address, requesting the interface's protocol address. In the case of our
example, the hardware address is the Ethernet address; the protocol address is
the Internet address.
This packet will make its way to all the bootpd server processes running on the
machines
on the local network (or subnet). Normally, NEXTSTEP will run a bootpd only
when the NETMASTER parameter in /etc/hostconfig is -YES-; NETMASTER is
set when a computer runs a networkwide NetInfo server, and thus is assumed
also to be an appropriate machine to run the configuration servers bootpd and

rpc.bootparamd.
The bootpd command is run about two-thirds of the way into /etc/rc during
system startup. bootpd, which is listening on UDP port 67, will check its
database when it receives the request;
if the requester's hardware address is found, bootpd will reply with the client's
Internet address, along with other information, per the BOOTP spec. bootpd
contacts lookupd to get the information in its database; lookupd obtains the
information solely from NetInfo. Specifically, bootpd asks lookupd to search for
an entry in /machines with an en_address property whose value is that
specified in the request packet.
If the requester isn't found, and if automatic host addition is enabled, and if the
bootpd is running on the same machine as the master server for the second-
level NetInfo domain, then a dialog for automatic host addition begins. (This
dialog will be described in a future column.) Note that an automatically added
host will be added only to the appropriate second-level domain, not to any
higher-level domains, if such exist.
Even though automatic host addition occurs only in the second-level domain,
bootpd's database is obtained from the entire (vertical view of the) NetInfo
domain hierarchy.
What if multiple bootpds are running on the local network and more than one
respond to the request? The first ªpositiveº response to reach the requester is
used. A positive response is one that specifies an explicit answer rather than
inviting automatic host addition. To handle the possibility that one of these

responders might search a domain that has the host and Ethernet address, and
another might not find it because it's in a different domain hierarchy, any
ªnonpositiveº responses are ignored for about 10 seconds, after which time it's
assumed that there really is no positive answer available.

THE BOOTP BOOTSTRAP PROBLEM
How can an IP packet be sent when the address of the sending interface isn't known? After all, one of the
required fields in the IP header is the source address! Further, how does the client even receive the reply
when it can't compare its IP address with the reply's destination IP address?

The BOOTP client code uses 0.0.0.0Ðthis hostÐas the source address for the BOOTP request and
the
generic local broadcast addressÐ255.255.255.255Ðas the destination address. (Note that 0.0.0.0 is valid
only as a source address and should be used only when the source's actual IP address is unknown.) The
server replies to the client's actual IP address, encapsulating the IP packet in an appropriate DLC frame
(Ethernet, token ring, and so on). The destination address in the DLC frame is the client's hardware address.

On receipt, the client's interface sees that the frame contains an IP packet and forwards the frame to the IP
stack in the kernel. The protocol stack handles IP packets containing UDP-based BOOTP replies in a
special manner when the interface's address is being configured. They're passed along up the protocol
stack and the interface's IP address is set.

Once the system is done configuring its IP address, it broadcasts its address to other systems using ARP, so
those other systems can load their ARP tables, if desired.Ðamm

No response?
If no reply at all is received to the BOOTP request after about 20 seconds (four
attempts, waiting 5 seconds after each attempt), the following message is sent to
the console:

No response from network configuration server.
Type Control-C to start up computer without a network
connection.

In this case, the ªconfiguration serverº means the BOOTP server. If the machine
in question shouldn't be using automatic address configuration, type Control-C,
modify the local network configuration using HostManager (or by editing
/etc/hostconfig carefully), and reboot. If the machine should be using automatic
address configuration, verify that there's some computer on the same local
network with a BOOTP server that has the correct information available.

Automatic netmask configuration
The network mask is used to determine which of the bits in an Internet address
are part of the network portion and which are part of the host portion. When
ifconfig processes the netmask -AUTOMATIC- arguments, it sends an ICMP
Netmask Request packet to the generic local network broadcast address
(255.255.255.255). This packet is received by all the network interfaces on the
local network. The IP stack itself in the kernel, rather than a separate user-level
daemon, handles this request.

To find out more about the significance of the difference between network and host portions, see the
references on the IP protocols cited at the end of the column.

If the network mask on the machine receiving the request was set explicitlyÐthat
is, was not itself determined through automatic netmask configurationÐan ICMP
Netmask Reply packet is sent to the requester. As with automatic address

configuration, the first reply received is used.

TIMEOUTS AND RETRIES

What happens when something requiring a response from ªthe networkºÐthat is, from some process
running on some anonymous remote computerÐdoesn't get a response? What does it even mean to
ªnot get a responseº?

Network communication in general uses timeouts to determine when ªno responseº has been received.
What if a response arrives just after the timeout expires? The answer depends on the software: The late
response might be ignored, or it might be used. If an identical retry is made, for example, the late response
just might fulfill the outstanding request (now on its second iteration), in which case the response to the
second request will be ignored.

What happens when a timeout occurs? Again, it depends on the software: The requester might request the
information again, log a warning and keep trying, log an error and abort the attempt to acquire
the information, or silently abort the attempt. Typically, when the requester tries again, it'll delay some
amount of time before the retry; successive attempts will typically involve increasing delays. (The increasing
delaysÐbackoffsÐare to minimize congestion. In an ideal environment, the timeout would be based on an
expectation of the reasonable delays for the specific implementation, and the expiration of the timeout would
indicate that the service is unavailable, not that it's busy.)

In the case of automatic network configuration, address and host name configuration will keep trying until
receiving a response or being interrupted by user input. Netmask configuration will abort after the fifth retry,
over a period of about a minute, with the error message ioctl (SIOCAUTONETMASK) timed out being sent
to the console.Ðamm

Normally, the network mask should be hardwired on machines providing
networkwide NetInfo services or configuration services and on any appropriate
networking equipment (such as routers). On all other NEXTSTEP computers and

most other non-NEXTSTEP computers supporting this, it should be left to
automatically configure the netmask. In NEXTSTEP Release 3.3, automatic
netmask configuration is the default; prior to 3.3, the default was to use the
netmask inherent in the address class of the interface. For example, an interface
with a Class C address used a mask of 255.255.255.0Ðthe high-order 24 bits are
in the network portion of the address, the low-order 8 bits are in the host portion.

Automatic broadcast address calculation
Under almost all circumstances, the broadcast address should be automatically
derivedÐIPBROADCAST should be set to -AUTOMATIC- (or ªBroadcast Addressº
set to ªDefaultº in HostManager). This will allow the system to determine the
specific local broadcast address using the configured Internet address and
network mask. The calculation turns on all the bits in the host portion of the
broadcast address and leaves the network portion of the address set to that of
the interface being configured.
Here's a table of Internet addresses, network masks, and default broadcast
addresses, taken from the article, ªBefore NetInfo Starts,º in the Summer 1993
NEXTSTEP in Focus.

Internet address Netmask Default broadcast address
129.18.1.2 255.255.0.0 129.18.255.255
129.18.1.2 255.255.255.0 129.18.1.255
129.18.1.2 255.255.255.240 129.18.1.15
129.18.1.195 255.255.255.240 129.18.1.207

It's sometimes easier to understand unusual netmasks like the last two in the

table if you see them in hexadecimal format, so here are the same addresses in
hexadecimal.
Internet address Netmask Default broadcast address
0x81120102 0xffff0000 0x8112ffff
0x81120102 0xffffff00 0x811201ff
0x81120102 0xfffffff0 0x8112010f
0x811001c3 0xfffffff0 0x811201cf
For details about the port mapper, see the entries for the books by Bloomer, Comer, and Stevens and the
second and third articles by Marcum in the references at the end of this article.

Among the first three example addresses, the Internet address remains the same
and the netmask changes, masking different bits. The default broadcast address
changes accordingly. For the fourth example, the low-order byte (octet) in the
Internet address changed from 02 to c3. The netmask indicates that the low-
order nybble (4 bits) are in the host number portion. The default broadcast
address is calculated appropriately.
The formula for computing a broadcast address is:

broadcast_address = Internet_address | (~netmask)

The broadcast address is the Internet address logically ORed with the logical NOT
of the netmask.

Automatic host name configuration
There's one last piece to the automatic network configuration puzzle: automatic
hostname configuration. This service is provided by another process in the suite

called the configuration server, rpc.bootparamd.
To enable automatic host name configuration, set the HOSTNAME parameter to
-AUTOMATIC-, corresponding to the ªHostnameº parameter in HostManager
being set to ªAutoconfigure.º This causes rc.net to execute the command
hostname -AUTOMATIC- as noted above. The hostname command will send a
packet to the network, requesting its host name. This request is made using the
BootParams protocol, which is built atop SunRPC.
How are the rpc.bootparamds contacted? A UDP broadcast packet is sent to
UDP port 111, which is the port mapper's port number. The packet is a SunRPC
Portmap request, PMAPPROC_CALLIT, an indirect invocation of some procedure in
a SunRPC program. In this case, that SunRPC program is bootparam; the
procedure is BOOTPARAMPROC_WHOAMI, requesting the host name for the given
protocol (Internet) address.
When rpc.bootparamd receives a BOOTPARAMPROC_WHOAMI request, it looks
for
the requesting host in the normal network administration information sources
using
gethostbyaddr(). If the address is knownÐfor example, if there's a host name
available for that addressÐrpc.bootparamd looks for that host by name in
NetInfo. (If NetInfo's not running, the /etc/bootparams file is consulted.) If the
requesting host's name isn't found in NetInfo, NIS is checked; specifically, the
bootparams map is searched, by requesting host's name. The DNS is not
checked here, though the gethostbyaddr() call might contact the DNS.

Questions? Send your questions about system and network internals to smythy@NeXT.COM.
In future columns we'll address those that are most interesting.

WHY USE AUTOMATIC CONFIGURATION?

One might ask, ªWhy use automatic configuration? Why not just solder everything in, and use specific
values for all these parameters, like we're used to doing?º

We could use ªmanualº network configuration if we wanted to. But, we'd then lose a great deal of the
flexibility and power available through our network administration and NetInfo, and a large network would
require many more people to deploy and administer.

What are the specific benefits of automatic configuration? The keys are centralization, uniformity, and
reliability. By centralizing all the necessary information on a very few computers, we can focus on ensuring
that just those computers are always availableÐand making just a few computers highly available is pretty
easy. Centralizing the data also makes it easier to manage: we know exactly where to go to change a given
piece of information when necessary, and very few places require changing.

But uniformity is perhaps the most important benefit. Uniformity means that every ªclientº computer on the
networkÐevery computer not providing networkwide services, and this is most of the computers on a large
networkÐis the same as every other computer. Anything unique about that computer, its location, or its
environmentÐthings like its address, its name, the names and locations of resources like file systems and
nearby printersÐcan be obtained from the network. Because of centralization, modifying the information
provided by ªthe networkº is fast and easy.

With each client computer identical to every other client computer, only one configuration is needed.
Computers can be configured, their software loaded, from a fixed template, with no local configuration
required. This allows for preconfiguring of spare computers, for example, or for replacing one person's failed
computer with that of someone on vacation and not worrying even about moving the ªcorrectº computer
back to the person on vacation.

Operationally, all that's required to replace a broken computer is to modify the en_address property of the
appropriate subdirectory of /machines in the correct NetInfo domain and boot the machine. Absolutely no
specific reconfiguration of the new computer's software is necessary. Besides decreasing the number of
people required to administer and maintain a large network, it also means that people who haven't gone
through the extensive training required to administer a very large network can take care of things like
hardware replacement essentially with no training.

Complete uniformity even allows people to use a computer in a different office, anywhere on a potentially
worldwide network, and see the same view as from his or her ªownº computer.

There is a detrimental effect to using automatic configuration: Network traffic is increased during startup.
This can be a particular problem if many computers are starting or restarting at the same time, such as
might happen when the power is restored following a power failure. There are also potential security
issues.Ðamm

Now, what does it mean for the host's name to be found in NetInfo? In fact, two
things are required. First, somewhere in the NetInfo domain hierarchy, there must
be a /machines subdirectory whose name property has, as one of its values, the
host's name. Second, in the case of the bootparams search, there must be a
bootparams property in that directory (in the same domain). The bootparams
property need not necessarily have a value, but it must be present; else, the
host's name ªwon't be found.º
It's very important to remember that automatic host name configuration requires
all three of the following things:
1 The host must be known by addressÐit must be possible to translate the host's
(interface's) Internet address into a name using gethostbyaddr().

2 There must be a /machines subdirectory for the host name found in Step 1
somewhere in the NetInfo domain hierarchy.
3 In the directory and domain found in Step 2, there must be a bootparams
property. Note that for automatic host name configuration, the en_address
property is unused, just as the bootparams property isn't used for automatic
address configuration.
If any of the above conditions is not met, no response will be provided by
rpc.bootparamd.
In this case, after about 45 seconds the hostname command will print the
following message on the console:
Configuration server not responding to request for hostname
Do nothing to keep waiting or press 'c' to continue.

On the other hand, if the requesting host's name is found, a reply containing the
host name, along with other information that is ignored, is sent to the requester.
Finally, back on the requesting computer, the hostname command receives the
reply, sets its host's name, prints the information about its having received a
name from a server on a particular computer, and returns.

Last Bits of rc.net
After setting the host name, rc.net sends a SIGUSR2 to nmserver. This tells
nmserver to initialize its network portion, because a network interface is now
configured and available. rc.net then returns to /etc/rc.

MORE TO COME¼
Believe it or not, we've not gone terribly far in /etc/rc. We've only covered about
10 to 15 percent of the code in /etc/rc, in fact. But, we have a network driver
loaded, an interface configured, and a host name set. In future editions of this
column, we'll cover the rest of /etc/rc, with continuing focus on the network-
related aspects of startup. n
Alan M. Marcum is a member of NeXT's Premium Support Team and specializes in the
management of large networks.

References

Bloomer, John. Power Programming with RPC. Palo Alto, CA: O'Reilly & Associates, 1991.

Comer, Douglas. Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture.
Englewood Cliffs, NJ: Prentice Hall, 1991.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.3BSD UNIX Operating System. Palo Alto, CA: Addison-
Wesley, 1989.

Majka, Marc. "Behind the Scenes of NeXT Networking," Support Bulletin, Summer 1992.
Redwood City, CA: NeXT Computer, 1992.

Marcum, Alan M. "Before NetInfo Starts," NEXTSTEP in Focus, Summer 1993. Redwood City, CA:

NeXT Computer, 1993.

Marcum, Alan M. "NetInfo Binding and Connecting," NEXTSTEP in Focus, Summer 1993.
Redwood City, CA: NeXT Computer, 1993.

Marcum, Alan M. "The Tough Stuff," NEXTSTEP in Focus, Summer 1993. Redwood City, CA:
NeXT Computer, 1993.

Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Palo Alto, CA: Addison-Wesley,
1994.

__
Next Article NeXTanswer #1988       appDidInit:         
Previous article NeXTanswer #1992 Realities of Distributed Objects         
Table of contents http://www.next.com/HotNews/Journal/OSJ/SpringContents95.html

